AIPrimer.AI
  • 🚦AI Primer In Transportation
  • CHAPTER 1 - INTRODUCTION TO MACHINE LEARNING
    • Machine Learning in Transportation
    • What is Machine Learning?
    • Types of Machine Learning
      • Supervised Learning
      • Unsupervised Learning
      • Semi-supervised Learning
      • Reinforced Learning
    • Fundamental concepts of machine learning
      • Model Training and Testing
      • Evaluating the Model’s Prediction Accuracy
      • The Underfitting and Overfitting Problems
      • Bias-Variance Tradeoff in Overfitting
      • Model Validation Techniques
      • Hyperparameter Tuning
      • Model Regularization
      • The Curse of Ddimensionality
    • Machine Learning versus Statistics
  • CHAPTER 2 - SUPERVISED METHODS
    • Supervised Learning_Complete Draft
    • K-Nearest Neighbor (KNN) Algorithm
    • Tree-Based Methods
    • Boosting
    • Support Vector Machines (SVMs)
  • CHAPTER 3 - UNSUPERVISED LEARNING
    • Principal Component Analysis
      • How Does It Work?
      • Interpretation of PCA result
      • Applications in Transportation
    • CLUSTERING
      • K-MEANS
      • SPECTRAL CLUSTERING
      • Hierarchical Clustering
    • REFERENCE
  • CHAPTER 4 - NEURAL NETWORK
    • The Basic Paradigm: Multilayer Perceptron
    • Regression and Classification Problems with Neural Networks
    • Advanced Topologies
      • Modular Network
      • Coactive Neuro–Fuzzy Inference System
      • Recurrent Neural Networks
      • Jordan-Elman Network
      • Time-Lagged Feed-Forward Network
      • Deep Neural Networks
  • CHAPTER 5 - DEEP LEARNING
    • Convolutional Neural Networks
      • Introduction
      • Convolution Operation
      • Typical Layer Structure
      • Parameters and Hyperparameters
      • Summary of Key Features
      • Training of CNN
      • Transfer Learning
    • Recurrent Neural Networks
      • Introduction
      • Long Short-Term Memory Neural Network
      • Application in transportation
    • Recent Development
      • AlexNet, ZFNet, VggNet, and GoogLeNet
      • ResNet
      • U-Net: Full Convolutional Network
      • R-CNN, Fast R-CNN, and Faster R-CNN
      • Mask R-CNN
      • SSD and YOLO
      • RetinaNet
      • MobileNets
      • Deformable Convolution Networks
      • CenterNet
      • Exemplar Applications in Transportation
    • Reference
  • CHAPTER 6 - REINFORCEMENT LEARNING
    • Introduction
    • Reinforcement Learning Algorithms
    • Model-free v.s. Model-based Reinforcement Learning
    • Applications of Reinforcement Learning to Transportation and Traffic Engineering
    • REFERENCE
  • CHAPTER 7 - IMPLEMENTING ML AND COMPUTATIONAL REQUIREMENTS
    • Data Pipeline for Machine Learning
      • Introduction
      • Problem Definition
      • Data Ingestion
      • Data Preparation
      • Data Segregation
      • Model Training
      • Model Deployment
      • Performance Monitoring
    • Implementation Tools: The Machine Learning Ecosystem
      • Machine Learning Framework
      • Data Ingestion tools
      • Databases
      • Programming Languages
      • Visualization Tools
    • Cloud Computing
      • Types and Services
    • High-Performance Computing
      • Deployment on-premise vs on-cloud
      • Case Study: Data-driven approach for the implementation of Variable Speed Limit
      • Conclusion
  • CHAPTER 8 - RESOURCES
    • Mathematics and Statistics
    • Programming, languages, and software
    • Machine learning environments
    • Tools of the Trade
    • Online Learning Sites
    • Key Math Concepts
  • REFERENCES
  • IMPROVEMENT BACKLOG
Powered by GitBook
On this page
  1. CHAPTER 6 - REINFORCEMENT LEARNING

Reinforcement Learning Algorithms

PreviousIntroductionNextModel-free v.s. Model-based Reinforcement Learning

Last updated 1 year ago

As mentioned earlier, a typical reinforcement learning setup is composed of two components, an agent and an environment. This environment refers to the object that the agent is acting on and it starts by sending a state to the agent. Following this, the agent based on its knowledge, takes an action in response to that state. Subsequently, the environment sends a pair of next state and reward back to the agent. The agents updates its knowledge with the reward returned by the environment and uses it to evaluate its last action. This continues until the environment sends a terminal state.

Some of the terms that are used in reinforcement learning have been explained below:

  • Action (A): This represents all the possible moves that the agent can take

  • State (S): This represents the current situation returned by the environment.

  • Reward (R): This is an immediate return sent back from the environment to evaluate the last action.

  • Policy (Ï€): This represents the strategy that the agent employs to determine next action based on the current state.

  • Value (V): This is the expected long-term return with discount (as opposed to the short-term reward R). Additionally, VÏ€(s) is defined as the expected long-term return of the current state under policy Ï€.

  • Q-value or action-value (Q): This represents Q-value, which is similar to Value and it takes an extra parameter, the current action a. QÏ€(s, a) refers to the long-term return of the current state s where action is taken under policy Ï€.