REFERENCES
AA. Kohavi and F. Provost, "Glossary of terms," Machine Learning, vol. 30, no. 2–3, pp. 271–274, 1998.
BB. Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation". Journal of Machine Learning Technologies. 2 (1): 37–63.
CC. Fawcett, Tom (2006). "An Introduction to ROC Analysis". Pattern Recognition Letters. 27 (8): 861–874. doi:10.1016/j.patrec.2005.10.010.
DD. Christian, Brian; Griffiths, Tom (April 2017), "Chapter 7: Overfitting", Algorithms To Live By: The computer science of human decisions, William Collins, pp. 149–168, ISBN 978-0-00-754799-9.
EE. Rokach, L. (2010). "Ensemble-based classifiers". Artificial Intelligence Review. 33 (1–2): 1–39. doi:10.1007/s10462-009-9124-7.
FF. Prechelt, Lutz; Geneviève B. Orr (2012-01-01). "Early Stopping — But When?". In Grégoire Montavon; Klaus-Robert Müller (eds.). Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science. Springer Berlin Heidelberg. pp. 53–67. doi:10.1007/978-3-642-35289-8_5. ISBN 978-3-642-35289-8.
JJ. BĂĽhlmann, Peter; Van De Geer, Sara (2011). "Statistics for High-Dimensional Data". Springer Series in Statistics: 9. doi:10.1007/978-3-642-20192-9.
Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, 2nd ed, Springer Series in Statistics. Springer-Verlag, New York.
Scikit-learn developers, 2019. Cross-validation: evaluating estimator performance — scikit-learn 0.21.3 documentation [WWW Document]. URL https://scikit-learn.org/stable/modules/cross_validation.html (accessed 10.5.19).
James, G., Witten, D., Hastie, T. and Tibshirani, R., 2013. An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
Goodfellow, I., Bengio, Y. and Courville, A., 2016. Deep learning. MIT press.
Xu, D. and Tian, Y., 2015. A comprehensive survey of clustering algorithms. Annals of Data Science, 2(2), pp.165-193.
Sorzano, C.O.S., Vargas, J. and Montano, A.P., 2014. A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877.
Khan, S.M., Dey, K.C. and Chowdhury, M., 2017. Real-time traffic state estimation with connected vehicles. IEEE Transactions on Intelligent Transportation Systems, 18(7), pp.1687-1699.
Khan, S.M., Islam, S., Khan, M.Z., Dey, K., Chowdhury, M., Huynh, N. and Torkjazi, M., 2018. Development of Statewide Annual Average Daily Traffic Estimation Model from Short-Term Counts: A Comparative Study for South Carolina. Transportation Research Record, 2672(43), pp.55-64.
Khan, S.M., Chowdhury, M., Ngo, L.B. and Apon, A., 2020. Multi-class twitter data categorization and geocoding with a novel computing framework. Cities, 96, p.102410.
Tan, B., Zhang, J. and Wang, L., 2011. Semi-supervised elastic net for pedestrian counting. Pattern Recognition, 44(10-11), pp.2297-2304.
Liu, T., Yang, Y., Huang, G.B. and Lin, Z., 2015. Detection of drivers’ distraction using semi-supervised extreme learning machine. In Proceedings of ELM-2014 Volume 2 (pp. 379-387). Springer, Cham.
Chakraborty, P., Sharma, A. and Hegde, C., 2018, November. Freeway traffic incident detection from cameras: A semi-supervised learning approach. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 1840-1845). IEEE.
Peters, Vijayakumar, and Schaal, “Natural Actor-Critic.”
Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning.
Mnih et al., “Playing Atari with Deep Reinforcement Learning.”
Van der Pol and Oliehoek, “Coordinated Deep Reinforcement Learners for Traffic Light Control. Zhu and Ukkusuri, “A Reinforcement Learning Approach for Distance-Based Dynamic Tolling in the Stochastic Network Environment.
Last updated