AIPrimer.AI
  • 🚦AI Primer In Transportation
  • CHAPTER 1 - INTRODUCTION TO MACHINE LEARNING
    • Machine Learning in Transportation
    • What is Machine Learning?
    • Types of Machine Learning
      • Supervised Learning
      • Unsupervised Learning
      • Semi-supervised Learning
      • Reinforced Learning
    • Fundamental concepts of machine learning
      • Model Training and Testing
      • Evaluating the Model’s Prediction Accuracy
      • The Underfitting and Overfitting Problems
      • Bias-Variance Tradeoff in Overfitting
      • Model Validation Techniques
      • Hyperparameter Tuning
      • Model Regularization
      • The Curse of Ddimensionality
    • Machine Learning versus Statistics
  • CHAPTER 2 - SUPERVISED METHODS
    • Supervised Learning_Complete Draft
    • K-Nearest Neighbor (KNN) Algorithm
    • Tree-Based Methods
    • Boosting
    • Support Vector Machines (SVMs)
  • CHAPTER 3 - UNSUPERVISED LEARNING
    • Principal Component Analysis
      • How Does It Work?
      • Interpretation of PCA result
      • Applications in Transportation
    • CLUSTERING
      • K-MEANS
      • SPECTRAL CLUSTERING
      • Hierarchical Clustering
    • REFERENCE
  • CHAPTER 4 - NEURAL NETWORK
    • The Basic Paradigm: Multilayer Perceptron
    • Regression and Classification Problems with Neural Networks
    • Advanced Topologies
      • Modular Network
      • Coactive Neuro–Fuzzy Inference System
      • Recurrent Neural Networks
      • Jordan-Elman Network
      • Time-Lagged Feed-Forward Network
      • Deep Neural Networks
  • CHAPTER 5 - DEEP LEARNING
    • Convolutional Neural Networks
      • Introduction
      • Convolution Operation
      • Typical Layer Structure
      • Parameters and Hyperparameters
      • Summary of Key Features
      • Training of CNN
      • Transfer Learning
    • Recurrent Neural Networks
      • Introduction
      • Long Short-Term Memory Neural Network
      • Application in transportation
    • Recent Development
      • AlexNet, ZFNet, VggNet, and GoogLeNet
      • ResNet
      • U-Net: Full Convolutional Network
      • R-CNN, Fast R-CNN, and Faster R-CNN
      • Mask R-CNN
      • SSD and YOLO
      • RetinaNet
      • MobileNets
      • Deformable Convolution Networks
      • CenterNet
      • Exemplar Applications in Transportation
    • Reference
  • CHAPTER 6 - REINFORCEMENT LEARNING
    • Introduction
    • Reinforcement Learning Algorithms
    • Model-free v.s. Model-based Reinforcement Learning
    • Applications of Reinforcement Learning to Transportation and Traffic Engineering
    • REFERENCE
  • CHAPTER 7 - IMPLEMENTING ML AND COMPUTATIONAL REQUIREMENTS
    • Data Pipeline for Machine Learning
      • Introduction
      • Problem Definition
      • Data Ingestion
      • Data Preparation
      • Data Segregation
      • Model Training
      • Model Deployment
      • Performance Monitoring
    • Implementation Tools: The Machine Learning Ecosystem
      • Machine Learning Framework
      • Data Ingestion tools
      • Databases
      • Programming Languages
      • Visualization Tools
    • Cloud Computing
      • Types and Services
    • High-Performance Computing
      • Deployment on-premise vs on-cloud
      • Case Study: Data-driven approach for the implementation of Variable Speed Limit
      • Conclusion
  • CHAPTER 8 - RESOURCES
    • Mathematics and Statistics
    • Programming, languages, and software
    • Machine learning environments
    • Tools of the Trade
    • Online Learning Sites
    • Key Math Concepts
  • REFERENCES
  • IMPROVEMENT BACKLOG
Powered by GitBook
On this page
  1. CHAPTER 3 - UNSUPERVISED LEARNING

REFERENCE

PreviousHierarchical ClusteringNextCHAPTER 4 - NEURAL NETWORK

Last updated 1 year ago

HUANG, L., NGUYEN, X., GAROFALAKIS, M., JORDAN, M. I., JOSEPH, A. & TAFT, N. In-network PCA and anomaly detection. Advances in Neural Information Processing Systems, 2007. 617-624.

JONSSON, P. Classification of road conditions: From camera images and weather data. 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings, 2011. IEEE, 1-6.

LEE, Y.-J., YEH, Y.-R. & WANG, Y.-C. F. 2012. Anomaly detection via online oversampling principal component analysis. IEEE transactions on knowledge and data engineering, 25, 1460-1470.

LI, L., SU, X., ZHANG, Y., HU, J. & LI, Z. Traffic prediction, data compression, abnormal data detection and missing data imputation: An integrated study based on the decomposition of traffic time series. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2014. IEEE, 282-289.

LI, Q., JIANMING, H. & YI, Z. A flow volumes data compression approach for traffic network based on principal component analysis. 2007 IEEE Intelligent Transportation Systems Conference, 2007. IEEE, 125-130.

SHAMIR, O. Convergence of stochastic gradient descent for PCA. International Conference on Machine Learning, 2016. 257-265.

SMITH, L. I. 2002. A tutorial on principal components analysis.

TSEKERIS, T. & STATHOPOULOS, A. 2006. Measuring variability in urban traffic flow by use of principal component analysis. Journal of Transportation and Statistics, 9, 49.

WALL, M. E., RECHTSTEINER, A. & ROCHA, L. M. 2003. Singular value decomposition and principal component analysis. A practical approach to microarray data analysis. Springer.

XING, X., ZHOU, X., HONG, H., HUANG, W., BIAN, K. & XIE, K. Traffic flow decomposition and prediction based on robust principal component analysis. 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2015. IEEE, 2219-2224.

ZHANG, C., CHEN, X. & CHEN, W.-B. A PCA-based vehicle classification framework. 22nd International Conference on Data Engineering Workshops (ICDEW'06), 2006. IEEE, 17-17.

"k-means++: The Advantages of Careful Seeding - ACM Digital ...." 7 Jan. 2007, . Accessed 20 Sep. 2019.

"An Algorithm for Vector Quantizer Design - IEEE Journals ...." . Accessed 20 Sep. 2019.

"Least squares quantization in PCM - IEEE Journals & Magazine." . Accessed 20 Sep. 2019.

"Learning the k in k-means - NIPS Proceedings." . Accessed 20 Sep. 2019.

"Review on determining number of Cluster in K-Means Clustering." . Accessed 20 Sep. 2019.

"Data clustering: 50 years beyond K-means - ScienceDirect." 1 Jun. 2010, . Accessed 20 Sep. 2019.

"A tutorial on spectral clustering | SpringerLink." 22 Aug. 2007, . Accessed 24 Sep. 2019.

"Spectral Graph Theory - American Mathematical Society." . Accessed 24 Sep. 2019.

"Some applications of Laplace eigenvalues of graphs ...." . Accessed 24 Sep. 2019.

"On spectral clustering." 3 Jan. 2001, . Accessed 24 Sep. 2019.

"Normalized cuts and image segmentation - IEEE Journals & Magazine." . Accessed 24 Sep. 2019.

"Influence of graph construction on graph-based clustering ...." . Accessed 24 Sep. 2019.

"A. K. Jain , M. N. Murty , P. J. Flynn, Data clustering: a review ...." 1 Sep. 1999, . Accessed 26 Sep. 2019.

"Efficient agglomerative hierarchical clustering - ScienceDirect." 1 Apr. 2015, . Accessed 26 Sep. 2019.

"Step-Wise Clustering Procedures - jstor." . Accessed 26 Sep. 2019.

"Data Clustering: Algorithms and Applications - CRC Press Book." . Accessed 26 Sep. 2019.

"Why so many clustering algorithms: a position paper." 1 Jun. 2002, . Accessed 26 Sep. 2019.

"On Using Class-Labels in Evaluation of Clusterings - Oregon ...." . Accessed 26 Sep. 2019.

"MultiClust 2010: Discovering, Summarizing and Using ...." . Accessed 26 Sep. 2019.

"A Method for Comparing Two Hierarchical Clusterings - jstor." . Accessed 26 Sep. 2019.

"Encyclopedia of Computer Science and Technology: Volume 45 - ...." . Accessed 26 Sep. 2019.

https://dl.acm.org/citation.cfm?id=1283383.1283494
https://ieeexplore.ieee.org/abstract/document/1094577/
https://ieeexplore.ieee.org/abstract/document/1056489/
https://papers.nips.cc/paper/2526-learning-the-k-in-k-means.pdf
http://www.academia.edu/5514429/Review_on_determining_number_of_Clus
https://www.sciencedirect.com/science/article/pii/S0167865509002323
https://link.springer.com/article/10.1007/s11222-007-9033-z
https://www.ams.org/books/cbms/092/
https://link.springer.com/chapter/10.1007/978-94-015-8937-6_6
https://dl.acm.org/citation.cfm?id=2980649
https://ieeexplore.ieee.org/document/868688
https://papers.nips.cc/paper/3496-influence-of-graph-construction-on-graph-based-clustering-measures
https://dl.acm.org/citation.cfm?id=331504
https://www.sciencedirect.com/science/article/pii/S0957417414006150
https://www.jstor.org/stable/2282912
https://www.crcpress.com/Data-Clustering-Algorithms-and-Applications/Aggarwal-Reddy/p/book/9781466558212
https://dl.acm.org/citation.cfm?id=568575
http://eecs.oregonstate.edu/research/multiclust/Evaluation-4.pdf
http://www.kdd.org/exploration_files/v12-02-12-MultiClust2010.pdf
https://www.jstor.org/stable/2288117
https://books.google.com/books?id=Nf_Kg5WfdhIC&pg=PR5&lpg=PR5&dq=wards+and+upgma+clustering+of+data+with+very+high+dimensionality&source=bl&ots=d8oQbVAylb&sig=ACfU3U29oHYBE5f5UezddI3khgidIWaAFA&hl=en