AIPrimer.AI
  • 🚦AI Primer In Transportation
  • CHAPTER 1 - INTRODUCTION TO MACHINE LEARNING
    • Machine Learning in Transportation
    • What is Machine Learning?
    • Types of Machine Learning
      • Supervised Learning
      • Unsupervised Learning
      • Semi-supervised Learning
      • Reinforced Learning
    • Fundamental concepts of machine learning
      • Model Training and Testing
      • Evaluating the Model’s Prediction Accuracy
      • The Underfitting and Overfitting Problems
      • Bias-Variance Tradeoff in Overfitting
      • Model Validation Techniques
      • Hyperparameter Tuning
      • Model Regularization
      • The Curse of Ddimensionality
    • Machine Learning versus Statistics
  • CHAPTER 2 - SUPERVISED METHODS
    • Supervised Learning_Complete Draft
    • K-Nearest Neighbor (KNN) Algorithm
    • Tree-Based Methods
    • Boosting
    • Support Vector Machines (SVMs)
  • CHAPTER 3 - UNSUPERVISED LEARNING
    • Principal Component Analysis
      • How Does It Work?
      • Interpretation of PCA result
      • Applications in Transportation
    • CLUSTERING
      • K-MEANS
      • SPECTRAL CLUSTERING
      • Hierarchical Clustering
    • REFERENCE
  • CHAPTER 4 - NEURAL NETWORK
    • The Basic Paradigm: Multilayer Perceptron
    • Regression and Classification Problems with Neural Networks
    • Advanced Topologies
      • Modular Network
      • Coactive Neuro–Fuzzy Inference System
      • Recurrent Neural Networks
      • Jordan-Elman Network
      • Time-Lagged Feed-Forward Network
      • Deep Neural Networks
  • CHAPTER 5 - DEEP LEARNING
    • Convolutional Neural Networks
      • Introduction
      • Convolution Operation
      • Typical Layer Structure
      • Parameters and Hyperparameters
      • Summary of Key Features
      • Training of CNN
      • Transfer Learning
    • Recurrent Neural Networks
      • Introduction
      • Long Short-Term Memory Neural Network
      • Application in transportation
    • Recent Development
      • AlexNet, ZFNet, VggNet, and GoogLeNet
      • ResNet
      • U-Net: Full Convolutional Network
      • R-CNN, Fast R-CNN, and Faster R-CNN
      • Mask R-CNN
      • SSD and YOLO
      • RetinaNet
      • MobileNets
      • Deformable Convolution Networks
      • CenterNet
      • Exemplar Applications in Transportation
    • Reference
  • CHAPTER 6 - REINFORCEMENT LEARNING
    • Introduction
    • Reinforcement Learning Algorithms
    • Model-free v.s. Model-based Reinforcement Learning
    • Applications of Reinforcement Learning to Transportation and Traffic Engineering
    • REFERENCE
  • CHAPTER 7 - IMPLEMENTING ML AND COMPUTATIONAL REQUIREMENTS
    • Data Pipeline for Machine Learning
      • Introduction
      • Problem Definition
      • Data Ingestion
      • Data Preparation
      • Data Segregation
      • Model Training
      • Model Deployment
      • Performance Monitoring
    • Implementation Tools: The Machine Learning Ecosystem
      • Machine Learning Framework
      • Data Ingestion tools
      • Databases
      • Programming Languages
      • Visualization Tools
    • Cloud Computing
      • Types and Services
    • High-Performance Computing
      • Deployment on-premise vs on-cloud
      • Case Study: Data-driven approach for the implementation of Variable Speed Limit
      • Conclusion
  • CHAPTER 8 - RESOURCES
    • Mathematics and Statistics
    • Programming, languages, and software
    • Machine learning environments
    • Tools of the Trade
    • Online Learning Sites
    • Key Math Concepts
  • REFERENCES
  • IMPROVEMENT BACKLOG
Powered by GitBook
On this page
  1. CHAPTER 5 - DEEP LEARNING
  2. Recent Development

Deformable Convolution Networks

PreviousMobileNetsNextCenterNet

Last updated 1 year ago

A key challenge in visual recognition is to accommodate geometric variations arising from object scale, pose, viewpoint, and part deformation. The CNNs discussed so far lacks internal mechanisms to handle the geometric transformations because they use fixed geometric structures, i.e., fixed sampling locations by convolution units, fixed-ratio pooling, fixed spatial bins for RoI pooling, etc. In addressing this issue, Dai, et al. [39] introduced two new modules to enhance CNNs’ capability of modeling geometric transformations.

The first is deformable convolution, which enables free form deformation of the sampling grid by adding 2D offsets to the regular grid sampling locations in the standard convolution Figure 2-50). The second is deformable Region of Interest (RoI) pooling. It adds an offset to each bin position in the regular bin partition of the previous RoI pooling (Figure 2-51). Similarly, the offsets are learned from the preceding feature maps and the RoIs, enabling adaptive part localization for objects with different shapes. Extensive experiments showed that learning dense spatial transformation in deep CNNs is effective for sophisticated vision tasks such as object detection and semantic segmentation.

Figure 2-52 Illustration of 3 × 3 deformable RoI pooling [39].
Figure 2-51 Illustration of 3 × 3 deformable convolution [39].